Abstract:The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5\,TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2$\times$ higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
Abstract:As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
Abstract:Temporal graph learning is pivotal for deciphering dynamic systems, where the core challenge lies in explicitly modeling the underlying evolving patterns that govern network transformation. However, prevailing methods are predominantly task-centric and rely on restrictive assumptions -- such as short-term dependency modeling, static neighborhood semantics, and retrospective time usage. These constraints hinder the discovery of transferable temporal evolution mechanisms. To address this, we propose the Temporal Graph Pattern Machine (TGPM), a foundation framework that shifts the focus toward directly learning generalized evolving patterns. TGPM conceptualizes each interaction as an interaction patch synthesized via temporally-biased random walks, thereby capturing multi-scale structural semantics and long-range dependencies that extend beyond immediate neighborhoods. These patches are processed by a Transformer-based backbone designed to capture global temporal regularities while adapting to context-specific interaction dynamics. To further empower the model, we introduce a suite of self-supervised pre-training tasks -- specifically masked token modeling and next-time prediction -- to explicitly encode the fundamental laws of network evolution. Extensive experiments show that TGPM consistently achieves state-of-the-art performance in both transductive and inductive link prediction, demonstrating exceptional cross-domain transferability.
Abstract:Molecular representations fundamentally shape how machine learning systems reason about molecular structure and physical properties. Most existing approaches adopt a discrete pipeline: molecules are encoded as sequences, graphs, or point clouds, mapped to fixed-dimensional embeddings, and then used for task-specific prediction. This paradigm treats molecules as discrete objects, despite their intrinsically continuous and field-like physical nature. We argue that molecular learning can instead be formulated as learning in function space. Specifically, we model each molecule as a continuous function over three-dimensional (3D) space and treat this molecular field as the primary object of representation. From this perspective, conventional molecular representations arise as particular sampling schemes of an underlying continuous object. We instantiate this formulation with MolField, a hyper-network-based framework that learns distributions over molecular fields. To ensure physical consistency, these functions are defined over canonicalized coordinates, yielding invariance to global SE(3) transformations. To enable learning directly over functions, we introduce a structured weight tokenization and train a sequence-based hyper-network to model a shared prior over molecular fields. We evaluate MolField on molecular dynamics and property prediction. Our results show that treating molecules as continuous functions fundamentally changes how molecular representations generalize across tasks and yields downstream behavior that is stable to how molecules are discretized or queried.
Abstract:Graphs provide a natural representation of relational structure that arises across diverse domains. Despite this ubiquity, graph structure is typically learned in a modality- and task-isolated manner, where graph representations are constructed within individual task contexts and discarded thereafter. As a result, structural regularities across modalities and tasks are repeatedly reconstructed rather than accumulated at the level of intermediate graph representations. This motivates a representation-learning question: how should graph structure be organized so that it can persist and accumulate across heterogeneous modalities and tasks? We adopt a representation-centric perspective in which graph structure is treated as a structural substrate that persists across learning contexts. To instantiate this perspective, we propose G-Substrate, a graph substrate framework that organizes learning around shared graph structures. G-Substrate comprises two complementary mechanisms: a unified structural schema that ensures compatibility among graph representations across heterogeneous modalities and tasks, and an interleaved role-based training strategy that exposes the same graph structure to multiple functional roles during learning. Experiments across multiple domains, modalities, and tasks show that G-Substrate outperforms task-isolated and naive multi-task learning methods.
Abstract:Large language model (LLM)-based agents exhibit strong step-by-step reasoning capabilities over short horizons, yet often fail to sustain coherent behavior over long planning horizons. We argue that this failure reflects a fundamental mismatch: step-wise reasoning induces a form of step-wise greedy policy that is adequate for short horizons but fails in long-horizon planning, where early actions must account for delayed consequences. From this planning-centric perspective, we study LLM-based agents in deterministic, fully structured environments with explicit state transitions and evaluation signals. Our analysis reveals a core failure mode of reasoning-based policies: locally optimal choices induced by step-wise scoring lead to early myopic commitments that are systematically amplified over time and difficult to recover from. We introduce FLARE (Future-aware Lookahead with Reward Estimation) as a minimal instantiation of future-aware planning to enforce explicit lookahead, value propagation, and limited commitment in a single model, allowing downstream outcomes to influence early decisions. Across multiple benchmarks, agent frameworks, and LLM backbones, FLARE consistently improves task performance and planning-level behavior, frequently allowing LLaMA-8B with FLARE to outperform GPT-4o with standard step-by-step reasoning. These results establish a clear distinction between reasoning and planning.
Abstract:Nutritional interventions are important for managing chronic health conditions, but current computational methods provide limited support for personalized dietary guidance. We identify three key gaps: (1) dietary pattern studies often ignore real-world constraints such as socioeconomic status, comorbidities, and limited food access; (2) recommendation systems rarely explain why a particular food helps a given patient; and (3) no unified benchmark evaluates methods across the connected tasks needed for nutritional interventions. We introduce GLEN-Bench, the first comprehensive graph-language based benchmark for nutritional health assessment. We combine NHANES health records, FNDDS food composition data, and USDA food-access metrics to build a knowledge graph that links demographics, health conditions, dietary behaviors, poverty-related constraints, and nutrient needs. We test the benchmark using opioid use disorder, where models must detect subtle nutritional differences across disease stages. GLEN-Bench includes three linked tasks: risk detection identifies at-risk individuals from dietary and socioeconomic patterns; recommendation suggests personalized foods that meet clinical needs within resource constraints; and question answering provides graph-grounded, natural-language explanations to facilitate comprehension. We evaluate these graph-language approaches, including graph neural networks, large language models, and hybrid architectures, to establish solid baselines and identify practical design choices. Our analysis identifies clear dietary patterns linked to health risks, providing insights that can guide practical interventions.
Abstract:We introduce LongDA, a data analysis benchmark for evaluating LLM-based agents under documentation-intensive analytical workflows. In contrast to existing benchmarks that assume well-specified schemas and inputs, LongDA targets real-world settings in which navigating long documentation and complex data is the primary bottleneck. To this end, we manually curate raw data files, long and heterogeneous documentation, and expert-written publications from 17 publicly available U.S. national surveys, from which we extract 505 analytical queries grounded in real analytical practice. Solving these queries requires agents to first retrieve and integrate key information from multiple unstructured documents, before performing multi-step computations and writing executable code, which remains challenging for existing data analysis agents. To support the systematic evaluation under this setting, we develop LongTA, a tool-augmented agent framework that enables document access, retrieval, and code execution, and evaluate a range of proprietary and open-source models. Our experiments reveal substantial performance gaps even among state-of-the-art models, highlighting the challenges researchers should consider before applying LLM agents for decision support in real-world, high-stakes analytical settings.
Abstract:Graph-structured data exhibit substantial heterogeneity in where their predictive signals originate: in some domains, node-level semantics dominate, while in others, structural patterns play a central role. This structure-semantics heterogeneity implies that no graph learning model with a fixed inductive bias can generalize optimally across diverse graph domains. However, most existing methods address this challenge from the model side by incrementally injecting new inductive biases, which remains fundamentally limited given the open-ended diversity of real-world graphs. In this work, we take a data-centric perspective and treat node semantics as a task-adaptive variable. We propose a Data-Adaptive Semantic Refinement framework DAS for graph representation learning, which couples a fixed graph neural network (GNN) and a large language model (LLM) in a closed feedback loop. The GNN provides implicit supervisory signals to guide the semantic refinement of LLM, and the refined semantics are fed back to update the same graph learner. We evaluate our approach on both text-rich and text-free graphs. Results show consistent improvements on structure-dominated graphs while remaining competitive on semantics-rich graphs, demonstrating the effectiveness of data-centric semantic adaptation under structure-semantics heterogeneity.
Abstract:Vision-language-action (VLA) models enable impressive zero shot manipulation, but their inference stacks are often too heavy for responsive web demos or high frequency robot control on commodity GPUs. We present BLURR, a lightweight inference wrapper that can be plugged into existing VLA controllers without retraining or changing model checkpoints. Instantiated on the pi-zero VLA controller, BLURR keeps the original observation interfaces and accelerates control by combining an instruction prefix key value cache, mixed precision execution, and a single step rollout schedule that reduces per step computation. In our SimplerEnv based evaluation, BLURR maintains task success rates comparable to the original controller while significantly lowering effective FLOPs and wall clock latency. We also build an interactive web demo that allows users to switch between controllers and toggle inference options in real time while watching manipulation episodes. This highlights BLURR as a practical approach for deploying modern VLA policies under tight compute budgets.